GRU1 [Deeplearning Part.8-4] GRU GRU 이전 글에서 게이트가 추가된 RNN으로 LSTM에 대한 글을 썼었는데, GRU는 이 게이트를 쓴다는 개념은 유지하고, 매개변수를 줄여 계산 시간을 줄여줍니다. LSTM과 비교해보면, 기억 셀을 사용하지 않고 은닉 상태만을 사용합니다. 게이트를 추가하기 전까진, 기본적인 RNN과 같은 모습입니다. GRU에는 r과 z라는 두 개의 게이트를 사용하는데 r은 reset, z는 update게이트입니다. LSTM에 비해 게이트 수가 줄었고, 기억 셀을 사용하지 않는다는 점에서 파라미터 수와 연산량이 확실히 줄 것 같다는 생각입니다! 그리고 reset과 update라는 정말 필요한 게이트만을 설정해준 느낌입니다. 우선 reset게이트는 과거에서 흘러온 은닉 상태를 얼마나 무시할지 정합니다. 한편, update.. 2022. 1. 25. 이전 1 다음