본문 바로가기

LSTM3

[Deeplearning Part.8-5] 어텐션 seq2seq의 문제점 seq2seq의 Encoder의 출력을 Decoder로 보낼 때 이 출력은 "고정 길이의 벡터"였습니다. 이 고정 길이의 벡터에 문제가 있습니다. Encoder에 입력된 데이터의 길이에 상관없이 항상 같은 길이의 벡터로 변환하기 때문입니다. 이제 이 seq2seq의 문제점들을 하나씩 개선시키며 어텐션 구조를 완성시켜보겠습니다. Encoder 개선 앞에서 얘기했던 문제를 개선하기 위해 입력 데이터의 길이에 따라 Encoder의 출력의 길이를 바꿔줍니다. hs에는 입력 문장(데이터)의 길이 만큼의 벡터들이 담기게 되었습니다. hs의 각 행벡터에는 해당 층에 입력된 데이터의 정보가 담겨있다고 볼 수 있습니다. Decoder 개선 1. 맥락 벡터 Encoder의 출력이 더 이상 고정 길이.. 2022. 1. 27.
[Deeplearning Part.8-4] GRU GRU 이전 글에서 게이트가 추가된 RNN으로 LSTM에 대한 글을 썼었는데, GRU는 이 게이트를 쓴다는 개념은 유지하고, 매개변수를 줄여 계산 시간을 줄여줍니다. LSTM과 비교해보면, 기억 셀을 사용하지 않고 은닉 상태만을 사용합니다. 게이트를 추가하기 전까진, 기본적인 RNN과 같은 모습입니다. GRU에는 r과 z라는 두 개의 게이트를 사용하는데 r은 reset, z는 update게이트입니다. LSTM에 비해 게이트 수가 줄었고, 기억 셀을 사용하지 않는다는 점에서 파라미터 수와 연산량이 확실히 줄 것 같다는 생각입니다! 그리고 reset과 update라는 정말 필요한 게이트만을 설정해준 느낌입니다. 우선 reset게이트는 과거에서 흘러온 은닉 상태를 얼마나 무시할지 정합니다. 한편, update.. 2022. 1. 25.
[Deeplearning Part. 8-2] LSTM 기본 구조의 RNN의 문제점 1. 기울기 소실 기울기 소실의 원인은 tanh함수입니다. tanh는 ouput의 절대값이 1보다 작아 역전파 시 기울기가 소실될 수 있습니다. 이 문제 때문에 기본 DNN모델이나 CNN에서 활성화함수로 sigmoid를 ReLU로 대체하는 것을 알 수 있었습니다. 2. 기울기 폭발(소실 포함) 기울기 폭발의 원인은 가중치 행렬과의 행렬곱입니다. W라는 가중치는 모든 시점에서 공유되는데, 자세한 부분은 https://yjjo.tistory.com/15를 참고하면 좋을 것 같습니다. W라는 가중치가 모든 시점에서 공유되기 때문에, 역전파가 하류로 갈수록 W의 전치가 계속해서 곱해져갑니다. 이 때, 행렬의 특잇값이 1보다 크다면 제곱 할수록 계속해서 커져 기울기 폭발이 일어납니다... 2022. 1. 25.