YOLO v31 YOLO v3 Main Ideas Bounding box Prediction YOLO v2는 bounding box 에측 시 t(x, y, w, h)를 구한 후 위 그림처럼 b(x, y, w, h)로 변형시켜 L2 loss를 통해 학습시켰다. 여기서 c(x, y)는 grid cell의 좌상단의 offset이다. 하지만 YOLO v3는 gt좌표를 위의 공식을 거꾸로 적용시켜 t로 변형 후 직접 t(x)와 직접 L1 loss를 통해 학습시키는 방식을 선택한다. 예측한 bbox 마다 objectness score를 Logistic 함수를 적용해 구한다. 또한 anchor box와 gt box와의 IoU 값이 가장 높은 box만 매칭시킨다. gt box에 할당되지 못한 bbox는 bbox regression loss를 만들지.. 2024. 1. 22. 이전 1 다음